PFAS – Challenges and Policy Options

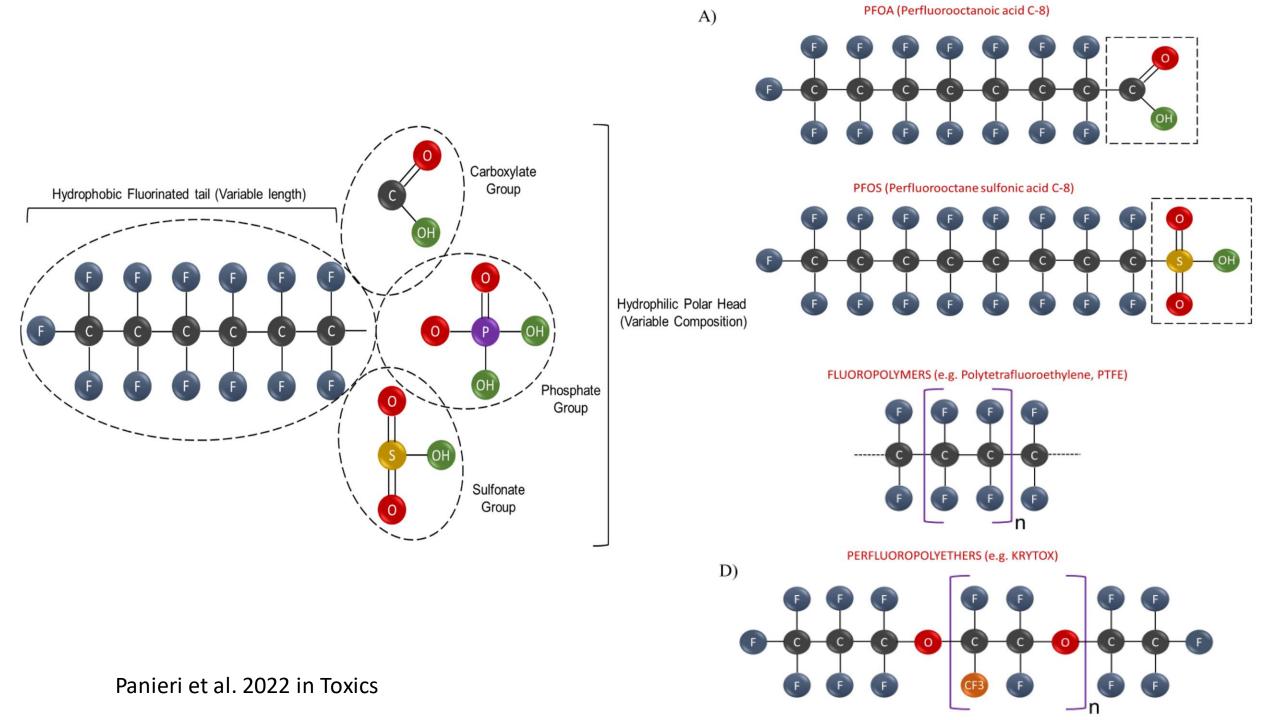
Dr. Timothy Randhir

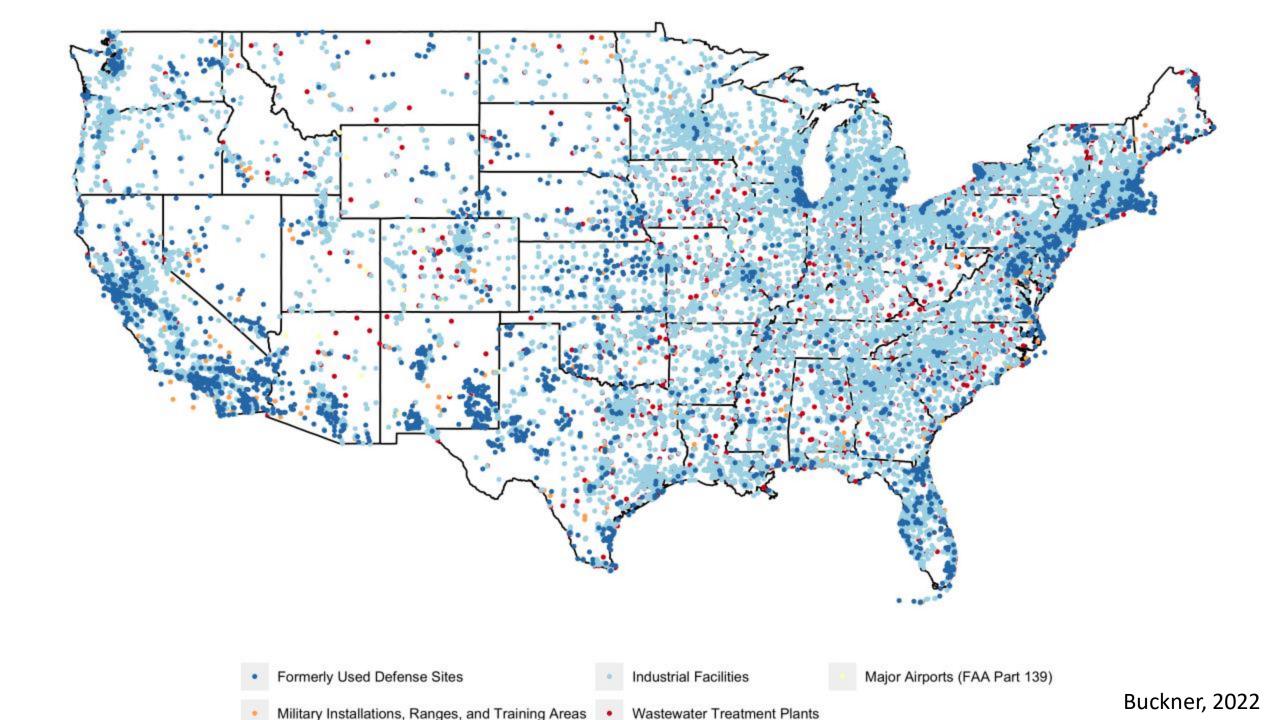
Professor and Director

Massachusetts Water Resources Research Center

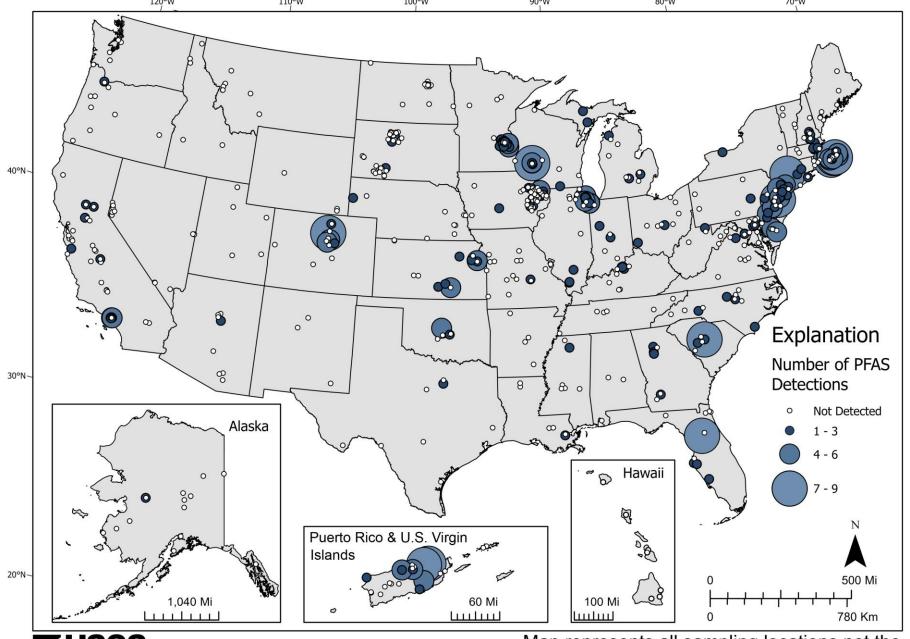
University of Massachusetts, Amherst.

Per- & polyfluoroalkyl substances (PFAS)


- **PFAS** is the collective name for a large group (>12,000) of fluorinated compounds.
- Used in aerosol propellants; solvents; pesticides; antifoaming agents; surface treatments for textiles, leather, masonry, and paper and board; leveling agents in paints, coatings, and waxes; plastics; lubricants and greases; and fire-fighting foams.


Perfluorinated

Polyfluorinated


Forever Chemicals

- The bond between carbon and fluorine is incredibly strong, making PFAS a group highly stable, persistent substances.
- PFAS move relatively quickly through the environment, making their contamination hard to contain. PFAS has been detected worldwide in air, water, wastewater, and soil.
- 45% of the nation's tap water is estimated to have one or more types of PFAS (USGS)
- Numerous studies link some PFAS chemicals to cancers, high cholesterol, thyroid disease, liver damage, asthma, allergies, reduced vaccine response in children, decreased fertility, newborn deaths, low birth weight, birth defects, and delayed development (Harvard T.H. Chan School of Public Health).

Per- and Polyfluoroalkyl Substances (PFAS) in Select U.S. Tapwater Locations

Map represents all sampling locations not the only locations where PFAS was observed.

How to Use

Database

Chemicals

Health Outcomes

About

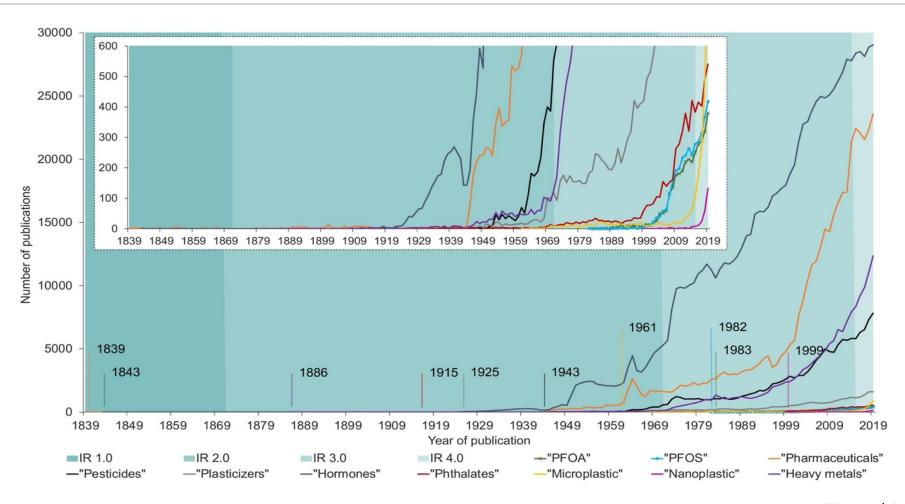
Search

The numbers in the heat map indicate the number of studies, not the number of significant effects. Click to select studies, click again to deselect.										Filters							
		1	ø				1	E	1 . 1		lε		1 1				Refresh page to reset all filters
	Colors correspond to		tem		Other			ten	8 E	E	_	System	-		E		
, , , ,	the study type: human		System System ght, Size		0	, o		Sys	ory Syste		System	S	et	>-	System		Study Type
	in green, animal in		Metabolic & Digestive System Body Weight, Size Growth Endocrine System		ciffic		Cell Toxicity/ Mortality Circulatory S		r Sy		Sys	tor	ske	dicit	S		Click for study type specific
blue , in vitro in orange.		abo	abo stiv		emi	sper odt		ılat	ous	nu	ary	espiratory	e e	000	01.0	ers	histograms, hover for study counts
PFAS Total		/leta	Metabolic & Digestive Syst Body Weight, Growth		yst	Systemic/ Nonspecific/(Reproductive System		Circulatory System	Nervous 9 Behavior	Immune System	Urinary	esb	Musculoskeletal System	Genotoxicity	Sensory	Cancers	human animal in vitro
PFNA	631	11963 32	16157		5 22 29 4						41 9 3	23 1				14 1	M Early Life Effects
PFHxS	578	12524 2	16833	12519 3	7 23 14 2	9 13410 3	1 15 35	61 8 8	39 14 8	49 8 1	41 7	21 3 1	8 6 2	7 4 1	5 1	16	Show All Effects
PFDA	506	70 100 30	88 71	75 35 3	1 9 55 4			29 14 11		30 22 5		16 3 1		2 4 7 9	9 1	10 2 3	
PFUnDA	297	54 22 19	67 28	59 15 2	10 7 1		8 22	26 6 7	13 7 2	17 8 2	11 4 1	13 1	2 4		9 1	9 1	∏ Financial Conflict of Interest
PFAS mix	204	40 35 11		49 24 14	4 5 22 1	0 29 15 2	2 19 18	12 14 1	7 17 2	9 12 1	7 9	5 4	4 7	2 4	4 2	9 2	All
PFDoDA	203	20 26 18	29 28	29 17 24	4 5 12 2	8 32 14 3	8 23	7 4 7	9 8 2	12 4	6 4 1	7 2 1	1 5	2	6 1	6 1	Selected Studies
PFBS	150	10 18 19	12 21	14 13 28	5 18 1	9 16 15 2	21 25	3 9 7	4 18 4	5 5 2	5 5 1	6 2 2	2 1 3 1	4 3	2 6	3 1	
PFHpA	143	25 14 17	27 9	22 9 20	0 5 7 1	7 32 4 1	6 20	12 3 4	5 3 2	8 5 2	3 3 1	4 1	1 1	1	6 1 1	6	Hover to see details, click for PubMed.
PFHxA	120	12 14 26	13 12	10 5 2	7 11 2	5 7 8 2	14 29	3 6 7	9 2	2 4 1	5 5 1	4 4	1 5 1	5	1 4 1	2 1	Abe et al. 2017
PFBA	99	9 13 22	9 17	6 5 29	2 14 1	8 7 4 1	13 25	1 6 5	4 2	3 4	5 4 1	1 2	1 3 1	1 2	1 2	1	Abe et al. 2017
PFTrDA	90	11 13 7	16 18	14 13 8	8 2 5	7 13 6	3 5	3 3 2	1 5	3 3	3 3 1	1	4		2 1	2	Abercrombie et al. 2021 🛚
PFTeDA	67	9 7 12	6 13	5 7 1	1 2 3 1	1 4 3 1	2 11	1 1 1	3 1	2 2	3 2 1	. 3	2		1	1	Abraham et al. 2020
MeFOSAA	66	15 1	20	15 1	1	1 19		5	10	1	8	1	3		4	3	Adinehzadeh and Reo 1998
PFAS + other	59	1 23 7	2 15	4 16 10	16	4 4 10	1 9 10	2 5	2 10 2	4 1	1 2	1	3	3	1	1	Adinehzadeh et al. 1999
PFHpS	58	11 2 1	19 3	15 3 2		1 20 1	2	5 1	5 1 1	4 2	2 1	3	1	:	3	1	Ahmed et al. 2019
PFPeA	57	6 5 12	8 5	6 1 1	1 1 3 1	8 6 3	4 11	1 1 2	2	1 1 1	. 3 1 1	2	1 1		1 1	1 1 1	Aimuzi et al. 2019 ₪
EtFOSAA	49	11 1	10 1	10	2	2 14		4	9	1	6	1	1		3	4	Aimuzi et al. 2020
6:2 CI-PFESA	44	6 10 4	10 12	6 10 4	4 1 11	2 8 5	11 5	4 3 2	1 3	3 3	3 2		1				Ait Bamai et al. 2020 🛚
GenX	29	10 9	10	8 9	9	7 6 2	10 11	5 2	4	2 1	4	1	2	2		1	Akerblom et al. 2017
PFDS	24	5 5 1	6 4	2 2 2	2 1 1	2 1 1	1 1	1 1	1	1 2	3 1	1	1 1		1	1	Alderete et al. 2019
8:2 CI-PFESA	13	3 1 1	5	3 1 2	2	3 1	2 2	2	1	1	1						Alkhalawi et al. 2016
6:2 FTSA	11	3 3	5	1	2	1	4 1	1	1	1							Allendorf et al. 2019
HFPO-TA	6	1 1 2	1	1 1 2	2	1	1 2	1			1						Alves et al. 2016
ADONA	5	1 1	1	1 2	2	1	2 2	1 1	. 2	1	1		2	1 1	1		Ammitzboll et al. 2019
PFO4DA	5	1 2 1	2	1 2 :	1 2		1 1	1 1	1	1	1 1		1				Andersson et al. 2019
PFO5DoDA	5	1 3	2	1 3	3	1	1	1 2		2	1 2		1				Annunziato et al. 2019
PFPeS	5	2 1	1	1	1 1	1	1		1				1				Annunziato et al. 2020
Nafion BP2	2	2	1	1	1			1		1	1						A-+:
PFNS	1	1			1												Download Study List

Health Effects

- •Reproductive effects
- •Developmental effects or delays in children
- •Increased risk of some cancers, including prostate, kidney, and testicular cancers.
- •Reduced ability of the body's immune system
- •Interference with the body's natural hormones.
- •Increased cholesterol levels and/or risk of obesity.

epa.gov


		(8)	(1)	(6)	(6) /	6	(6)	10	(n)	(8)	(8)	(8)	(a)	(10)	
Health Effect Endpoint	Ŕ	EED (A)	FRES (M) PRE	Sea (S) St	ith A (6)	ins (6)	20.DA (6)	DOMA (1)	thou (1)	05A(8)	iOA(8)	to ₂₍₈₎	FMA (9)	FDA(10) PK	Jua (11)
Body weight	•	•		•	•	•	•		•	•	•	•	•	•	•
Respiratory	•	•		•	•	•				•	•	•	•		
Cardiovascular	•	•		•	•					•	•		•		•
Gastrointestinal	•	•		•	•					•	•	•	•		•
Hematological	•	•		•	•	•				•	•		•	•	•
Musculoskeletal	•	•		•	•					•	•				
Hepatic	•	•		•	•	•	•	•	•	•	•	•	•	•	•
Renal	•	•		•	•	•		•		•	•	•	•	•	•
Dermal	•					•		•		•	•				
Ocular	•	•		•		•				•	•				
Endocrine	•	•		•	•	•		•		•	•	•	•		•
Immunological	•	•		•	•	•	•	•		•	•	•	•		
Neurological	•	•		•	•	•			•	•	•		•		•
Reproductive	•	•		•	•	•	•	•		•	•	•	•		•
Developmental	•	•		•	•	•	•		•	•	•	•	•	•	•
Other noncancer						•				•		•			
Cancer						•				•	•				

Health Impacts

- Health costs linked to exposure to just a few PFAS are 52–84 billion Euros, and environmental remediation are 17 billion Euros (Goldenman et al. 2019).
- The bloodstream levels of PFOS and PFOA remain detectable among Americans (CDC, 2017).

Research Trends

Challenges

Widespread Presence of PFAS

Health and Environmental Risks

Persistence in the Environment

Regrettable substitution- substitution of well-studied toxic chemicals with less-studied ones.

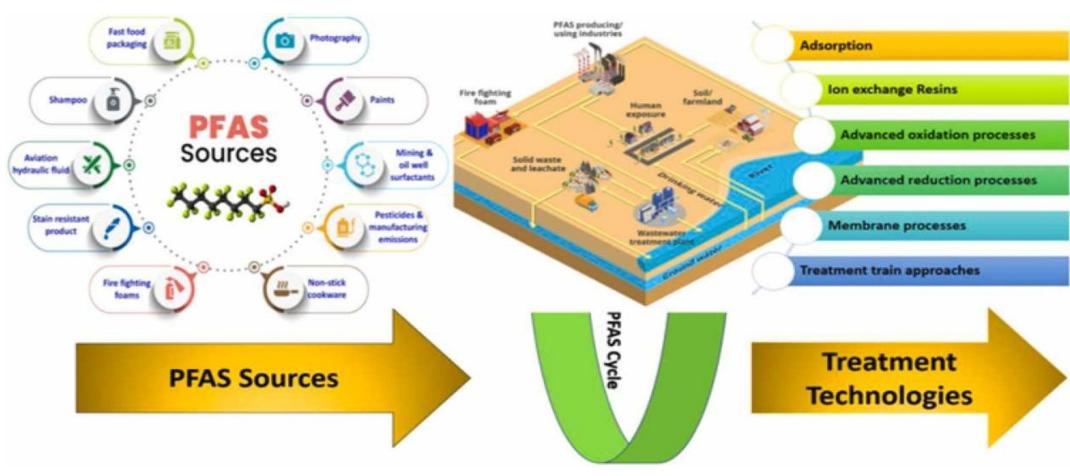
Inconsistent Standards: The standards are diverse, and this class of chemicals has no consistent regulatory structure.

Partial Regulation: Most PFAS substances remain unregulated.

Innovative Policy Approaches

Zero Discharge Policies

- Implementing strict regulations on industrial discharge.
- Encouraging zerowaste initiatives.


PFAS-Free Product Mandates

- Bans or restrictions on the use of PFAS in consumer products.
- Incentivizing the development of PFAS-free alternatives.

Advanced Water Treatment Technologies

- Investing in research for effective PFAS removal techniques.
- Implementing advanced filtration systems in water treatment plants.

Emerging Technologies

Regulatory

Ban all PFAS in food contact materials (Maine and Washington)

Ban from paper and paperboard food packaging (Denmark)

Bans in firefighting foam (South Australia and Washington State)

Regulate use in carpets and rugs (California)

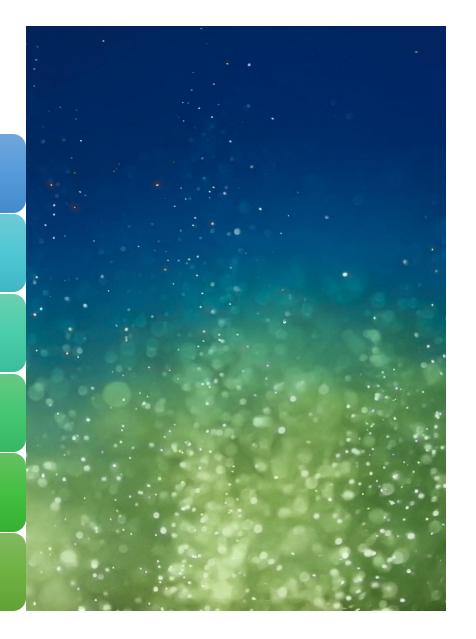
PFAS – Total limit (European Union)

Essentiality Concept: limit the uses of hazardous chemicals to only those considered "essential" while fostering the development of safer alternatives.

Regrettable substitution-substitution of well-studies toxic chemicals with less-studied ones; Managing PFAS as a class is needed to avoid chemicals. (Kwiatkowski et al., 2020)

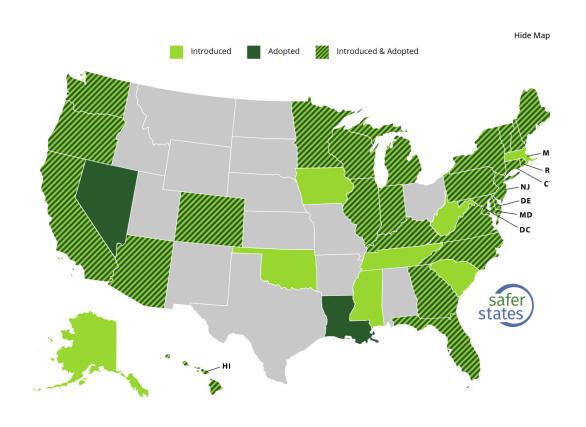
Markets

Customer demand: Increasing demand for products with less harmful substances drives some companies to phase out PFAS.


Corporate responsibility and value can play a role in changing supplies.

Class: Prioritizing research and development funding for treatment and disposal/destruction methods for the entire class of PFAS

Reporting: Retailers and product manufacturers need to know and publish where PFAS are present in their supply chains to foster greater transparency and confidence in the composition and safety of end products.


Systematic Inventory of PFAS Industries at all scales.

Advanced detection and monitoring

Selected Policies

- Carpet collection, manufacturer notification of ingredients in child products, package reduction, restrict PCP with PFA
- Source reduction, disclosure to water consumers, and restricted sales.
- Technical and Financial assistance to drinking water systems
- Management plan, prohibit the sale of products
- Monitoring requirement

www.saferstates.org

Challenges and Considerations

1. Cost and Feasibility

- 1. Balancing economic impacts with public health priorities.
- 2. Identifying funding sources for mitigation efforts.

2. Regulatory Harmonization

- 1. Aligning policies across different jurisdictions.
- 2. Addressing challenges in enforcement and compliance.

3. Scientific Uncertainties

- 1. Research gaps in understanding PFAS toxicity and exposure pathways.
- 2. Incorporating evolving scientific knowledge into policy decisions.

Conclusions

PFAS are widespread with impacts on health and the environment

Persistence and multimedia properties make it complex to address

Policies at source, transfer, and fate can help in addressing PFAS

Emerging technologies at source, transfer, and fate show promise

Challenges include cost feasibility in mitigation and scientific uncertainties

There is a need for regulatory harmonization

Proposed PFAS National Primary Drinking Water Regulation (EPA)

Compound	Proposed MCLG	Proposed MCL (enforceable levels)					
PFOA	Zero	4.0 parts per trillion (also expressed as ng/L)					
PFOS	Zero	4.0 ppt					
PFNA							
PFHxS							
PFBS	1.0 (unitless)	1.0 (unitless) Hazard Index					
HFPO-DA	Hazard Index						
(commonly							
referred to as							
GenX Chemicals)							

EPA Roadmap

RESEARCH

Invest in research, development, and innovation to increase understanding of PFAS exposures and toxicities, human health and ecological effects, and effective interventions that incorporate the best available science.

Objectives

- Build the evidence base on individual PFAS and define categories of PFAS to establish toxicity values and methods.
- Increase scientific understanding on the universe of PFAS, sources of environmental contamination, exposure pathways, and human health and ecological effects.
- Expand research on current and emerging PFAS treatment, remediation, destruction, disposal, and control technologies.
- Conduct research to understand how PFAS contribute to the cumulative burden of pollution in communities with environmental justice concerns.

RESTRICT

Pursue a comprehensive approach to proactively prevent PFAS from entering air, land, and water at levels that can adversely impact human health and the environment.

Objectives

- Use and harmonize actions under all available statutory authorities to control and prevent PFAS contamination and minimize exposure to PFAS during consumer and industrial uses.
- Place responsibility for limiting exposures and addressing hazards of PFAS on manufacturers, processors, distributors, importers, industrial and other significant users, dischargers, and treatment and disposal facilities.
- Establish voluntary programs to reduce PFAS use and release.
- Prevent or minimize PFAS discharges and emissions in all communities, regardless of income, race, or language barriers.

REMEDIATE

Broaden and accelerate the cleanup of PFAS contamination to protect human health and ecological systems.

Objectives

- Harmonize actions under all available statutory authorities to address PFAS contamination to protect people, communities, and the environment.
- Maximize responsible party performance and funding for investigations and cleanup of PFAS contamination.
- Help ensure that communities impacted by PFAS receive resources and assistance to address contamination, regardless of income, race, or language barriers.
- Accelerate the deployment of treatment, remediation, destruction, disposal, and mitigation technologies for PFAS, and ensure that disposal and destruction activities do not create new pollution problems in communities with environmental justice concerns.

Brown and Cald