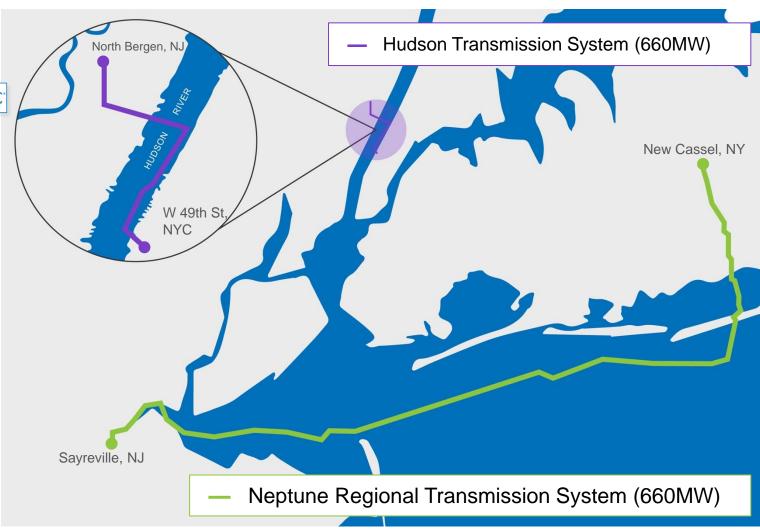


Anbaric: Who We Are

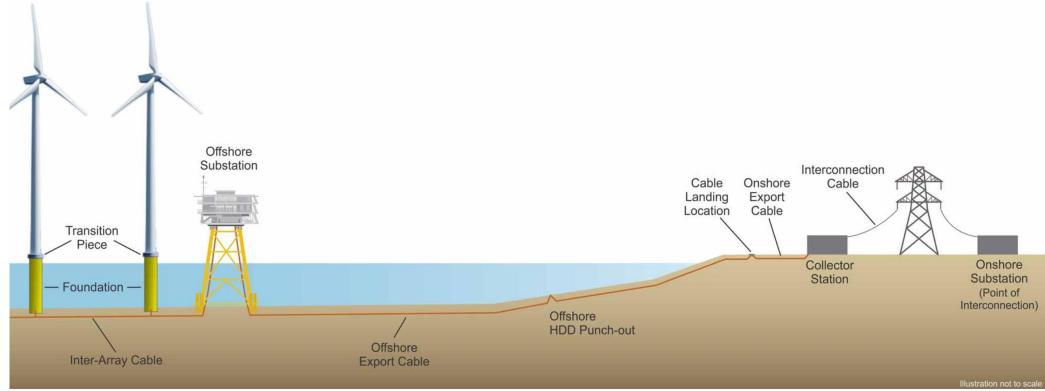
Developers of transmission and energy storage


Backed by Ontario
 Teachers' Pension Plan

 Active in Northeast, Mid-Atlantic, Canada and California

ONTARIO TEACHERS' PENSION PLAN 60% ANBARIC* 40%

Record of Success: Neptune and Hudson


- Two large buried HVDC transmission projects (COD 2007 and 2013)
- √ \$1.5B total capex
- ✓ On-time & On-budget
- ✓ Built with local, union labor

Offshore Wind Transmission: What is it?

- Wind turbines connected to offshore substation via buried inter-array cables
- Offshore export cable buried in seabed to shore landing
- (Typically) underground cable connects to existing grid
- Cost and duration of upgrades to onshore grid often unknown at time of bid submission

https://coastalvawind.com/about-offshore-wind/delivering-wind-power.aspx

Offshore Wind Transmission: Overview

Two approaches to transmission

- > Generator lead line: offshore wind company responsible for wind farm + transmission & interconnection
 - Transmission optimized for one project
 - No cable corridors, multiple cable landings
- ➤ Planned, independent transmission: 3rd party (transmission developer, utility or offshore wind company) responsible for transmission & interconnection
 - Transmission optimized for all projects
 - Cable corridors, fewer cable landings

Industry trend

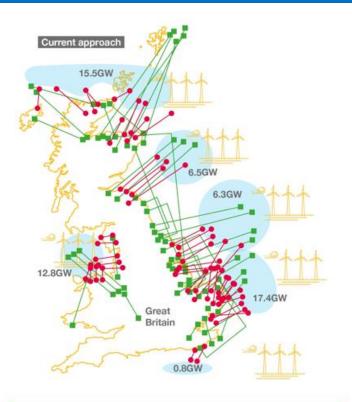
- Typically starts with generator lead lines
- ➤ As interconnection costs (particularly onshore upgrades) and routing challenges increase, transmission is separated from generation, evidenced in:
 - Europe
 - New Jersey
 - [New England?]

August 15, 2022

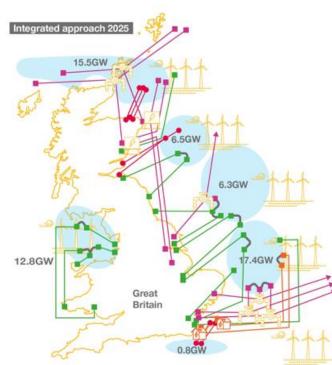
Offshore Wind Transmission:

An Analysis of New England and New York Offshore Wind Integration

PREPARED FOR:


Northeast Regional Ocean Council & Mid-Atlantic Regional Council on the Ocean Webinar

Elements we examine	A planned approach shows
 Total onshore + offshore transmission costs Onshore transmission upgrade costs (more risk) Offshore transmission costs (less risk) 	Lower overall costs in both NE & NYSubstantially lower onshore costsSlightly higher offshore costs
Losses over offshore transmission	Reduced losses
Impact to fisheries and environment	Substantially lower impacts
Effect on generation & transmission competition	Increased competition
Utilization of constrained landing points	Improved landing point utilization
Enabling third-party customers	Improved third-party participation


https://www.brattle.com/wp-content/uploads/2021/06/21229_offshore_wind_transmission_-_an_analysis_of_options_for_new_england_and_new_york_offshore_wind_integration.pdf

Offshore Wind Transmission: United Kingdom

ntegrated approach 2030

Capex Cost: £29 billion

Total Assets: 330

Total Landing points: 105

Capex Cost: £27 billion (-8%)

Total Assets: 40% reduction

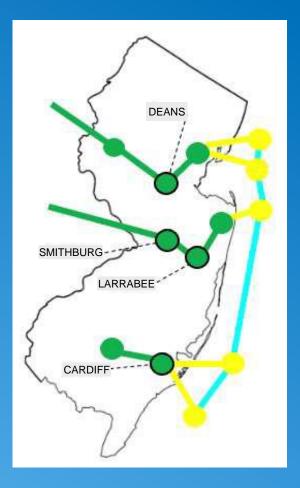
Total Landing points: 60

Capex Cost: £23 billion (-18%)

Total Assets: 70% reduction

Total Landing points: 30

https://newenglandenergyvision.files.wordpress.com/2021/02/bstojkovska-02-02-2021-draft.pptx


New Jersey & PJM

New Jersey & PJM procuring transmission solutions for up to 6.4GW of offshore wind

- First offshore wind transmission procurement in United States
- Awards expected October 2022
- 80 bids from 13 developers, including offshore wind companies, utilities, and transmission developers (including Anbaric)...
 - ...vs. 2 bidders in Massachusetts' latest offshore wind procurement
- Increased competition found to reduce costs
 ~20% to 30% for onshore* and offshore**
 transmission

Other states in PJM could use similar mechanism to procure transmission

Procurement Scope:

Green:

- Option 1—Upgrade PJM Transmission system to on-shore substations
- Black Outline indicates substations targeted for injections as described at left.

Yellow:

 Option 2—From Upgraded Shore Substations over Beach crossing to New (wet) collector stations.

Blue:

 Option 3—Interconnecting collector stations in a network to facilitate delivery of offshore wind.

^{*} The Brattle Group, "Cost Savings Offered by Competition in Electric Transmission: Experience to Date and the Potential for Additional Customer Value," April 2019, Produced for LSP Transmission.

^{**} Cambridge Energy Policy Associates, "Evaluation of OFTO Tender Round 2 and 3 Benefits," March 2016, Produced for Ofgem

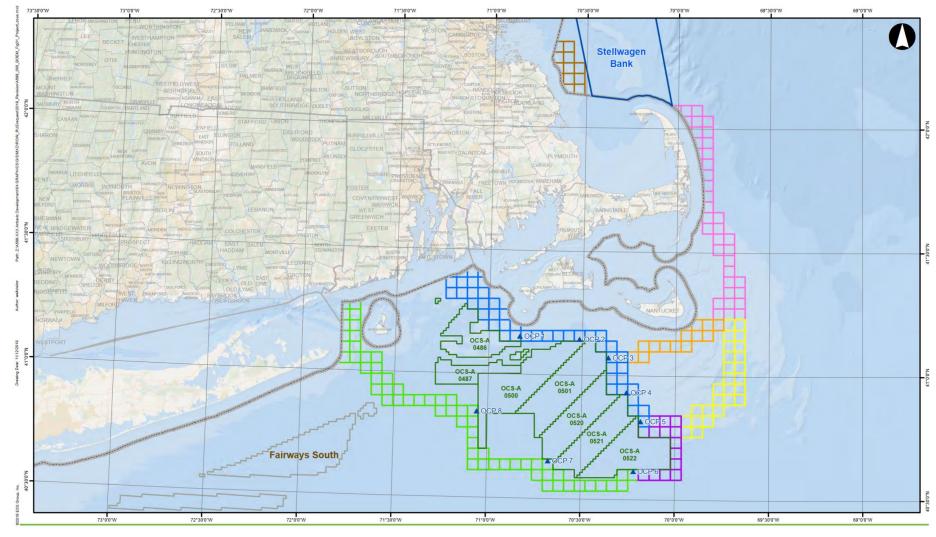
New England

- Massachusetts, Connecticut & Rhode Island authorized to procure independent transmission for offshore wind
- Federal funding for transmission available through Infrastructure Investment and Jobs Act
- Policy Statement from Federal Energy Regulatory Commission (FERC) encourages states to propose voluntary agreements to develop transmission*
- All or a subset of New England States could collaborate to procure transmission for offshore wind and potentially onshore renewables (e.g., from Northern Maine)
- No need to wait on FERC transmission rulemaking, which will take years to implement

A TRANSMISSION BLUEPRINT FOR NEW ENGLAND: DELIVERING ON RENEWABLE ENERGY

MAY 23, 2022

https://renewne.org/wp-content/uploads/2022/05/RENEW-Northeast-Transmission-Blueprint-2022-05-23.pdf


^{*} https://www.ferc.gov/media/e-2-061721

Appendix – supplemental slides

Southern New England Ocean Grid – BOEM Application

- Non-exclusive right of way/right of use application to Bureau of Ocean Energy Management submitted Nov. 18, 2019
- ➤ In federal waters >3 miles from shore
- Access routes to robust points of interconnection in Massachusetts, Rhode Island, Connecticut and New York

Source: https://www.boem.gov/sites/default/files/documents/renewable-energy/Anbaric-S-New-England-OceanGrid.pdf