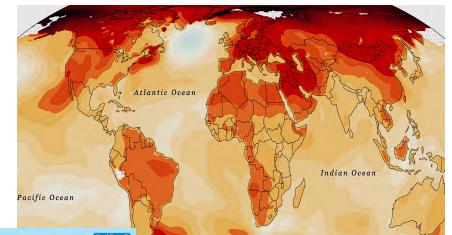
Sequestering Carbon in Agricultural Soils: Why, What & How Much?


Dr. Sara Via Professor & Climate Extension Specialist UMD, College Park svia@umd.edu

Source: Modern Farmer

Three critical problems

- the climate problem
- the water problem
- the soil problem

Nature-based solutions to all three start with soil Dr. Sara Via svia@umd.edu

Climate: Reducing emissions is not enough We also need to remove CO₂ from atmosphere

We can use plants for this!

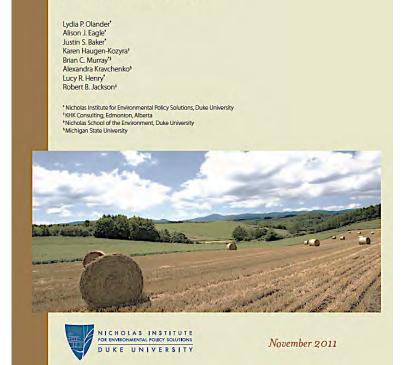
 Land-based carbon sequestration is effective, practical, low-cost & available now

Farming practices that rebuild soil also reduce the other problems by
Storing atmospheric carbon in soil & woody plants
Increasing water quality & regulating water flow

No-tillfarmer.com

Solution: Conservation agriculture rebuilds soil

No-till: less erosion, soil structure No Cover Crop Radishes in the Fall Miller et al. 2017 Nebraska Extension. & holds more water, water filtered & cleaned Cover crops: reduce erosion, living roots feed soil microbes Crop rotation: increases diversity of plants & soil microbes


Maryland: Identify research-based practices for sequestering C in agricultural soils

Goal: Evidence-Based Policy

- Reviewed scientific literature on carbon sequestration
- Evaluated support for the sequestration potential of various practices in "conservation agriculture"
- Developed menu of recommended practices

TECHNICAL WORKING GROUP ON AGRICULTURAL GREENHOUSE GASES (T-AGG) REPORT

Assessing Greenhouse Gas Mitigation Opportunities and Implementation Strategies for Agricultural Land Management in the United States

- Evaluated GHG reductions, past and future

Dr. Sara Via svia@umd.edu

From Conservation Practices to GHG reductions:

COMET-Farm and COMET-Planner

Tools for conservation and 'best management' practice scenario analyses and GHG emission inventories at farm and ranch scale

Dr. Keith Paustian, Colorado State

ISDA United States Department of Agriculture Colorado Natural Resources Conservation Service

Recommended NRCS practices for carbon sequestration in Maryland

GHG estimates from come	t-planner.nrel.colostate.edu/COMET-Planner_Report_Final.pdf	GHG	Reduct	lon	
NRCS Conservation Practices			Mt CO2e/ac/yr		
Cropland Management	Description of practice	CO2	N ₂ O	Sum	
Conventional Tillage to No Till		0.42	-0.11	0.31	
Conventional Tillage to Reduced Tillage	Reduced tillage = strip till	0.13	0.07	0.20	
N Fertilizer Management	Improve N fertilizer management to reduce by 15% through 4R or nitrification inhibitors	0.00	0.11	0.11	
Replace N Fertilizer w/ Soll Amendments	Soil amendments include compost, manure	1.75	0.00	1.75	
Conservation Crop Rotation	Decrease fallow or add perennial crop to rotation	0.21	0.01	0.22	
Cover Crops	Add seasonal cover crop to cropland	0.32	0.05	0.37	
Insert forage planting into rotation	Add annual or perennial forage to rotation	0.21	0.01	0.22	
Mulching	Add high carbon mulch to cropland	0.32	NA	0.32	
Land use changes- add herbaceous pl	ants Dr. Sara Via svia@umd.edu	-	_		
Conservation Cover	Convert to permanent unfertilized grass, legume, pollinator or other mix, ungrazed	0.98	0.28	1.26	
Forage and biomass planting	Convert to grass, forage or biomass plant	0.21	0.01	0.22	
Riparlan herbaceous cover	Convert area near water to permanent unfertilized grass	0.98	0.28	1.26	
Contour buffer strips	Covert strips to permanent unfertilized grass, legume, pollinator or other mix	0.98	0.28	1.26	
Field border	Convert strips to permanent unfertilized grass/legume to reduce runoff	0.98	0.28	1.26	
Filter Strip	Convert strips to permanent unfertilized grass/legume	0.98	0.28	1.26	
Grassed Waterway	Convert strips to permanent unfertilized grass/legume to filter water	0.98	0.28	1.26	
Vegetative barrier	Plant stiff vegetative cover on hillsides or by streams to reduce erosion; can be used in critical areas	0.98	0.28	1.26	

Highlighted practices are currently incentivized for water quality,

All have significant or medium research support

Recommended NRCS practices for carbon sequestration in Maryland

Land use changes- add woody plants		μ.		
Tree & shrub establishment, Incl woodlot	Plant trees and shrubs	1.98	0.28	2.26
Riparian Forest Buffer Establishment	Replace strip of cropland near water with woody plants	2.19	0.28	2.47
Alley Cropping	Replace 20% of annual cropland with woody plants	1.71	0.03	1.74
Multistory Cropping	Replace 20% of cropland with trees & shrubs of different heights, could be permaculture	1.71	0.03	1.74
Hedgerows	Replace strip of cropland with one row woody plants, could combine with Conservation Cover for pollinators	1.42	0.28	1.70
Grazing		1	111	
Silvopasture	Add trees and shrubs tograzed pastures (> 20 plants/acre)	1.34	0.00	1.34
Prescribed grazing/rotational grazing	Short-term intense grazing in small paddocks	0.26	0.00	0.26

All but * have significant or medium research support

Used number of acres each year in highlighted subset of practices incentivized for water quality to estimate GHG reduction from use of "water quality" practices

2006-18: ~ 6 MMt

= taking 1.3 million cars off the road for a year

New tool from American Farmland Trust

<u>Carbon Reduction Potential Evaluation (CaRPE)</u>

- Evaluates GHG reduction from agricultural practices using county level estimates from COMET-Planner
- Can use to see where largest increase in carbon sequestration is likely, how much more is possible

Dr. Jen Moore-Kucera

crop adoption = 9.6% Maryland cover crop adoption ~ 47% National average cover crop adoption = 3.9% (of all cropland)

North Carolina cover

Target counties with greatest scope for improvement

Top 10 counties for Cover Crop Adoption

	Amount of cropland without cover crops	Reduction if cover crops adopted on this cropland		
County	(acres)	(MT CO ₂ e yr ⁻¹)		
Robeson	203,702	128,112		
Sampson	181,427	113,999		
Duplin	146,758	92,333		
Union	139,507	59,986		
Pitt	132,661	84,831		
Beaufort	116,502	74,501		
Wayne	113,509	71,430		
Columbus	109,942	70,309		
Johnston	106,374	66,982		
Bertie 98,022		62,651		

Project future GHG reduction

Practice Category	Current or Remaining	Convert from	Converted to	Tonnes CO ₂ e yr ⁻¹
Cover Crop	Current	No cover	Legume	281,361
	Remaining	No cover	Legume	2,679,308

Dr. Jen Moore-Kucera

American Farmland Trust

Tool for State-level planning and assessment "COMET-Explorer"

Approach:

- Utilize point-scale data generated by COMET-Farm/ COMET-Planner to support county-, regional- or statewide analytics for soil carbon and GHGs
- Enable user-specified *policy adoption scenarios* for chosen practices, available land areas and LU types, and projected adoption rates (over time)

Dr. Sara Via svia@umd.edu

Co-benefits of carbon-sequestering practices

Economic co-benefits to farmers:

- Improved soil health
- Reduced erosion (worth \$40-140/acre)
- Increased profits from reduced inputs, labor & energy savings (even if yield declines initially)
 2013: no-till saved MD farmers > \$10 billion in fuel
- Climate resilience: reduced risks from flood/drought

Co-benefits of carbon-sequestering practices

Environmental co-benefits from healthy soil

- Water quality: reduced nutrients, sediment, chemicals
- Better stormwater control & reduced flooding
- Better water holding, less irrigation needed
- Improved ecosystem services, worth up to \$3500/acre

Dr. Sara Via svia@umd.edu

Pending: Monitoring carbon sequestration Verify that management practices increase SOC

- Establish a set of permanent sites for regular sampling by trained techs (NRI sites?)

- * range of soils, geography and cropping systems conventional & C-sequestering practices
- * standard sampling protocol to 50 cm (or 1m?)
- * standard soil analyses, including microbial
- * measure change in soil organic carbon (SOC)
- Farmers submit yearly soil tests with records of field management

* correlate data on farm-level changes in SOM with data from permanent plots

Contact me anytime with questions or comments!

Dr. Sara Via

Professor & Climate Extension Specialist <u>svia@umd.edu</u>